FORMATION, STRUCTURE, and CONFORMATION OF A NEW RING

SYSTEM: 8,10-DITHIABICYCLO[5.3.1]UNDECA-2,5-DIENE

E. Cuthbertson, D.D. MacNicol*, and P.R. Mallinson

Department of Chemistry, The University of Glasgow, Glasgow, 612 8QQ.

(Reoeivsad In DR **25 lwmary 1975;** acoepted for publication **13 Msrob 1975)**

We have recently described¹⁻³ reactions of $\frac{syn-3}{7}$,7-dibromo-cis,cis-cycloocta-1,5-diene (I) with a number of ambident nucleophiles which resulted in the direct introduction of a one-atom bridge to give either the carbocyclic bicyclo[3.3.1] nona-2,6-diene ring system or a 9-hetero analogue. The success of these reactions prompted us to explore the possible formation of a three-atom bridge across the cyclooctadiene ring.

Reaction of dibromide (I) with sodium trithiocarbonate (Na_2CS_3) in aqueous acetonitrile

at room temperature for 1.5 hr gave, in 33% yield, bright yellow plates, m.p. 132-134' (from CS_2) of a compound $C_9H_{10}S_3$ giving satisfactory microanalysis and osmometric m.wt. and m/e 214 (M^+) . The ¹H n.m.r. (in CS₂) reveals the presence of 4 olefinic protons (7 4.1-4.4, complex), 2 methine protons (τ 5.68), and 4 non-equivalent methylene protons (multiplets at τ 6.54, 6.78, 7.30, and 7.32). From this, and decoupling experiments one can assign to the product the bicyclo[5.3.1]structure (II) rather than the bicyclo[3.3.3]structure (III), the isochronous nature of the bridgehead methine protons (checked at different field strengths in several solvents) implying cis-bridging as shown.

1345

A plausible mechanism for the formation of (II) is given in the Scheme, the initial S_y^2 attack on (I) to give the anion (IV) being followed by a $[3,3]$ sigmatropic rearrangement⁴ to

(V) which can then cyclise to the relatively strain-free (II).

Compound (II) is of interest with respect to a comparison of its conformational properties in solution and in the solid state.⁵ The two major conformational possibilities are shown in Figure 1, in the form labelled (BC) the carbocyclic cycloocta-1,4-diene ring 6 possesses a rigid <u>boat-chair</u> conformation, 7 and in form (TB), which has an enantiomeric form (TB[']), the cyclooctadiene ring is a twist-boat.

A detailed analysis of the proton spectrum (which will be described in full elsewhere) indicates the predominance of twist-boat forms in solution (TB) being in rapid equilibrium with its enantiomer (TB') ; for example, in agreement with this, a coupling of only $ea. 4 Hz$ is found between the bridgehead methines and vicinally-related olefinic protons, whereas the near eclipsing of these hydrogens in the (BC) form would imply a relatively large vicinal coupling constant.⁸ Attempts to observe individual twist-boat forms with non-averaged couplings were

General view of the conformation of 9-thiono-8,10- dithiabicyclo(5.3.l]undeca-2,5-diene in the crystal (monoclinic form)

made, however no changes attributable to kinetic effects were observed on measuring the $^{\mathrm{1}}\texttt{H}$ n.m.r. spectrum of (II) at temperatures from ambient down to -50° C in CD₂Cl₂.

Two crystalline modifications of (II) have been obtained, an orthorhombic form, space groups Pbca, and a monoclinic form. The monoclinic form was chosen for detailed study, and has $\underline{a} = 13.004$ (2), $\underline{b} = 5.967$ (1), $\underline{c} = 12.680$ (1), $\beta = 101.75$ (1)^o, and space group P2₁/<u>n</u>, \underline{z} = 4, \underline{D}_c = 1.48. The structure was solved by direct methods employing 1449 significant X-ray intensities measured with a Hilger and Watts automatic diffractometer, and was refined to a final R factor 0.066. During the course of the analysis all the hydrogen atoms were located employing a difference Fourier map. Figure 2 shows a general view of the molecule in the monoclinic crystal, the carbocyclic ring possessing a twist-boat conformation: the molecule has all atoms in general positions, and both enantiomeric forms are present in the crystal. A close transannular approach of hydrogen atoms on $C(4)$ and $C(11)$, 2.16(7) λ is noteworthy and the separation of $C(4)$ and $C(11)$ atoms themselves is 3.06 (1) A.

It is interesting to note that, as in the case⁵ of dibromide (I), the predominant molecular conformation found in solution, is the same form found to be present in the solid state.

Acknowledgement:

We wish to thank Dr. C.J. Gilmore for preliminary crystallographic measurements on the orthorhombic form of (II).

References

- 1. E. Cuthbertson and D.D. MacNicol, J.C.S. Perkin I, 1974, 1893.
- 2. E. Cuthbertson and D.D. MacNicol, J.C.S. Chem. Comn., 1974, 498.
- 3. E. Cuthbertson and D.D. MacNicol, Tetrahedron Letters, 1974, 2367. (A double bridging process .)
- 4. For recent examples of similar facile rearrangements see, R.T. Arnold and C. Hoffmann, Synthetic Comm., 1972, 2, 27; R.E. Ireland and R.H. Mueller, J. Amer. Chem. Soc., 1972, 94, 5897; T. Hayashi, Tetrahedron Letters, 1974, 339.
- 5. For a detailed parallel study of (I) see: R.K. Mackenzie, D.D. MacNicol, H.H. Mills, R.A. Raphael, P.B. Wilson, and J.A. Zabkiewicz, J.C.S. Perkin II, 1972, 1632.
- 6. Unlike the cycloocta-1,5-diene ring system, the cycloocta-1,4-diene ring has been relatively neglected with respect to conformational investigation; see however: F.R. Ahmed, Acta Cryst., 1975, $\underline{B31}$, 26. (Studies on dibenz $[c, f]$ azocines.)
- 7. J.D. Dunitz and J. Waser, J. Amer. Chem. Soc., 1972, 94, 5645.
- 8. A value of J_{vic} of 8.5 Hz was observed in a model compound, see N.S. Bhacca, L.J. Luskus, and K.N. Houk, Chem. Comm., 1971, 109.